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ABSTRACT

Basic considerations are discussed for determining sample sizes

and record lengths for various statistical tests and estimates which are

important to random fatigue testing. Methods for determining minimum

sample sizes when comparing means and variances of normally (Gaussian)

distributed random variables are described. Procedures for reducing

a relatively large sample to a smaller sample are presented. Elimina-

tion of outliers and systematic resampling are two methods given.

An explanation is presented of the requirements and problems in-

volved in the determination of record lengths necessary for an estimate

of a given accuracy for autocorrelation functions, ordinary power spectral

density functions, cross-correlation functions, cross-spectral density

functions, frequency response functions, and probability density functions.

Due to its importance in random fatigue testing applications, the

basic properties of the Weibull distribution in terms of its parameters

and the failure rate are summarized. A presentation is given of esti-

mation and statistical testing problems related to the Weibull distribution.

The best available methods of estimating the parameters are described.

Methods of determining sample sizes needed for various analyses are

developed. Some problems of reliability analysis applicable in fatigue

testing are discussed. New methods of decision techniques for compar-

ing two or more systems are proposed in terms of reliability. The

report concludes with an example of the application of the Weibull distri-

bution to actual fatigue test data.

iii



RANDOM FATIGUE TEST SAMPLING REQUIREMENTS

CONTENTS
page

1. Introduction .............................................. . 1

2. Sample Size Calculations for Equivalence of

Means and Variances ........................................ 3

2. 1 Sample Size for Equivalence of Means ............. 5

2. 2 Sample Size for Equivalence of Variances ............ 8

3. Reduction of Sample Size ................................... 10

3.1 Methods of Reduction ................................ 10

4. Autocorrelation Function Estimates ......................... 19

5. Power Spectrum Estimates ................................. 24

6. Cross-Correlation Estimates ............................... 28

7. Cross-Spectrum Estimates ................................. 30

8. Frequency Response Function Estimates .................... 32

9. Probability Density Estimates .............................. 38

10. The Weibull Distribution for Fatigue Tests .................. 40

10. 1 Definition of the Weibull Distribution ................. 42

10.2 Weibull Parameter Estimates ....................... 46

10.3 Weibull Parameter Confidence Limits ................ 49

10.4 Hypothesis Tests ................................... 51

10.5 Reliability Problems ................................ 52

10.6 Sample Size ........................................ 55

10.7 Example of Fatigue Test ............................. 61

11. Recommendations ......................................... 66

References ..................................................... 67

V



ILLUSTRATIONS

Figure Page

1. Illustration of Type I, Type II Errors ........................... 6

2. Periodic Variation. B denotes unfavorable case and G

denotes favorable case ........................................ 15

3. Zone Stratifications of a System ................................ 17

4. Typical Autocorrelation Function ............................... 21

5. Standard Error for Correlated Products ........................ 23

6. Data for Frequency Response Function Measurement

Confidence .................................................... 35

7. Four Shapes of the Weibull Density Function ................... 43

8. H(t) with y = 0, a = 1, P= 1,2,3,4 ........................... 44

9. R(t) e-t (.y -0 and a =1)) ................................. 53

10. 4c(t)) R(t 0)................................................54

11. Distribution of Failure Time ................................... 62

12. Survival Curve ................................................ 65

vi



RANDOM FATIGUE TEST SAMPLING REQUIREMENTS

1. INTRODUCTION

In random fatigue testing, many different statistical parameters are

of interest in the various facets of a given test. This report discusses

some of the sample size requirements which are necessary to estimate

these parameters. Of central importance to fatigue life testing is the

Weibull distribution. This is so because the probability distribution of

parameters such as time to failure and cycles to failure are usually reason-

ably modeled by the Weibull distribution. Various statistical aspects of the

Weibull distribution are discussed herein.

In many experimental design situations, an assumption of a Gaussian

distribution of various sample statistics is invoked in order to allow the

estimation of required sample sizes or record lengths. This assumption is

almost always justified if the sample sizes one is concerned with are large,

say greater than thirty. The central limit theorem guarantees Gaussian

distributions for large N. In other situations, one is forced into Gaussian

assumptions for small sample sizes due to the lack of an available exact

theory. Any requirements based on Gaussian assumptions in this case

become questionable but are at least reasonably proper guidelines for

experiment planning purposes. Hence, although most of the results in this

report are based on Gaussian assumptions, they are in practice usefully

applied to most practical problems.

The two most fundamental quantities in statistics are mean values

and variances. The first section following, therefore, discusses sample size

requirements for means and variances assuming a Gaussian distribution.

Often, a large sample of data will be collected which must be reduced to a

smaller more tractable size. Some of the ideas involved in eliminating un-

wanted data points (outliers) and methods for over-all reduction of sample

size are presented. Later sections discuss correlation function, power
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spectral density function, and frequency response function estimates, and

are presented in terms of an allowable percentage normalized standard

error. The final section describes fatigue life testing applications of the

Wieibull distribution.

Two different approaches are used for determining sample size

requirements. In Section 2, it is assumed that some reason exists for

hypothesizing a specific value for a population parameter. One may then

calculate the sample size necessary to detect a specified deviation from

this hypothesized value with a given probability. This is the method to use

when one has:

i) a specific value predicted by theory against which to test

(for example, the theoretical expected number of runs in a

sample of N independent observations is [N/2] + 1 ).

ii) a measured known value, possibly from previous experiments,

and one is hypothesizing the new data to be significantly

different (i.e. , testing a supposedly improved product

[new structural panelI against a former product).

The other approach is that of computing the sample size necessary to

estimate a parameter with a given percentage error as opposed to specifying

a specific value. The normalized standard error is employed. This is the

square root of variance (the standard error) of the estimate divided by its

expected value (normalized) to give variability in a percentage form. The

pitfall in this concept lies in attaching undue importance to a deviation of

one standard deviation (rms value). Deviations of plus and minus one standard

deviation occur with a given probability and are of no more importance than

deviations of, say, plus and minus two or plus and minus one-half standard

deviations. Therefore, in quoting results or performing calculations one

must be careful to note that one allows a deviation of a given percentage with

a specific probability, and that rms values are not maximum errors which

occur.
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2. SAMPLE SIZE CALCULATIONS FOR EQUI-
VALENCE OF MEANS AND VARIANCES

In any situation where one knows or hypothesizes a mean and variance

of a Gaussian distribution, one may compute sample sizes necessary to

properly test sample values against these theoretical values. Certain con-

straints must be imposed on the problem, such as specifying the level of

significance and probability of Type II Error, which are explained below.

The sample size may then be calculated which maintains these probabilities.

In other cases one may be able to calculate required sample sizes based on

a requirement to estimate a parameter with a specified percentage (rms)

error.
2

A theoretical mean 1i and variance a- can sometimes be computed

for a given distribution (or one can assume values). Using these theoretical

values, one can then test obtained sample values to determine if the observed

distribution can be considered to be the same as the theoretical distribution.

In this case the statistical hypothesis is: "There is no evidence to conclude

that the sample values are not the same as the theoretical values. " These

will be two-tailed tests, since deviations from the hypothesized values may

occur in either direction.

Two types of errors can be made:

Type I Error - Rejecting the hypothesis when it is really true
with probability a

Type II Error - Accepting the hypothesis when it is really false
with probability P

To illustrate these two errors, one only needs to consider the sample mean

values computed from two different random samples of observations drawn

from the same underlying population. Clearly, with a certain small proba-

bility, say a = 10%, these sample mean values might differ enough to

appear truly different. This is the Type I Error. On the other hand, if

random samples are collected from two slightly different populations, clearly

3



by chance (say with probability P = 10%), the mean values computed from

these two samples might be so close together that they appear equivalent.

This is the Type II Error.

As can be seen from this example, the farther apart the populations

truly are, the smaller is the chance of the sample mean values appearing

equivalent. Hence, in addition to specifying a and P, one must impose an

additional restraint on the problem to allow the sample size to be calculated.

That is, one must specify what particular deviation from the hypothesized

parameter will allow the hypothesis to be accepted with probability P. In

some specific situations one might have suspicions about the theory involved

and anticipate some particular value other than the hypothesized value. In

other cases one must use judgment in selecting values somewhat arbitrarily.

For the illustrative examples in this section, a ten percent difference

in means and a fifty percent difference in standard deviations are selected as

the values at which the probability of Type II Error will be held. Of course,

other deviations from the theoretical values may be chosen, and have a

specific associated probability of the hypothesis being accepted. Also, for

simplicity, a and P will be chosen each equal to 10%.
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2. 1 SAMPLE SIZE FOR EQUIVALENCE OF MEANS

The calculation of the required sample size for the test of equivalent

mean values is as follows: Let p.' be the mean value of the distribution

which is to be detected with a probability 3 = 10%, and zl1 &/ 2 a normal

(Gaussian) deviate such that

Prob (z :_ z 1 / 2 )= 1-a/2

That is,

Prob z <] z P 1 I f e z/ dz = (1)

The reason for using a/2 instead of a is to allow for two-sided deviations

so that the Type I Error is a.

The following relations now hold where x is the critical point (seec

Figure 1). That is, x is a. value such that if R > x , the hypothesis isc c

rejected, and if R < x , the hypothesis is accepted where 3 is the calcu-c

lated sample mean. The sample mean x is defined by the equation

N

R x.1  (2)

i=1

where x. are the observations which make up the sample.

Figure 1 is not quite complete in the sense that deviations in either

direction are considered. However, the symmetry is implied by using

a/2 and P/2 rather than a and P. In terms of a/Z,

x -p.

= c (3)
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while, in terms of P/2,

C

z P/2=(4)
2

where a2 is the theoretical variance of the distribution being sampled.

Prob (x < x / ; Type II Error

Prob (x > x ) =/2 " Type I Error
c

Figure I. Illustration of Type I, Type 11 Errors

In the special situation where one sets a = P, it follows that z a12 'P1•2.

Also, due to the symmetry of the normal distribution, zlI-a/2 = -z,/2"

Hence, from Eqs. (3) and (4),

x c- ý x c- ý'

I I

Solving for x Cone obtains

c 2

I 6



Then substituting back in Eq. (4),

2 2
za/ 2 /=r_

Letting Aý. _ q -ji, and solving for N:

a- 2Z 2

a2

(Ai.L/2) 2 Ala

Note that the implicit assumption has been made that a- = (-1) where (a-')2

is the alternative variance. Therefore, this test would be properly performed

after the alternative variance (-')2 had been determined to be statistically
2equivalent to the theoretical value a-

Computational Example

The calculation of N based on the test for equivalent means is illustrate(

as follows. Assume from independent considerations one obtains the theore-

tical values

j=50

2
a-= 25

The required sample size to detect a 10% difference in means (namely

A• = 5 here) with a Type II Error of f 10% then is calculated by applying

Eq. (6). For a = 10%, the term z = 1.645. Thus
.95

N = 4-5 (1.645)2 - 11

This sample size of N = 11 will be compared later to the sample size

required for equivalent variances.
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2.2 SAMPLE SIZE FOR EQUIVALENCE OF VARIANCES

The reasoning for obtaining a formula to compute the sample size for
the variance equality test proceeds in a similar manner. Let s represent

22 2 cthe critical point.Then, since (N-i) s /a- has a X distribution with (N - 1) d. f. ,

one has

2 (T') 2 2(7)

and
22

2 2. 2
Sc (N-1ý1-&/2 (8)

2 2 2where XP/ 2 and X,_,12 are points of the X distribution with (N- i) d. f.2
The sample(unbiased)variance s is defined by the formula

Ns2 1. _ -2
s N-I (xi - 2) (9)

Equating (7) and (8) and rearranging terms gives for the case a = 3.

2(1,)2 XI-¢/ 2
2=- 2 

(10)
2 2

Although(N - 1) cancels out, X is a function of (N - 1). Therefore, when T-

and (a-) 2are specified, a trial and error inspection of a X table will give2
values of X for some number of d. f. such that Eq. (10) holds true.

Computational Example

For example, for (N - 1) = 29 d. f. , one finds in the X table

2
0._5 42.6

- = 2.41
2 17.7

X
.95
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For all practical purposes this corresponds to the desired ratio of standard
deviations of 1.55 and 1. 0. Therefore, a convenient sample size to test for

variance equivalence is 30.

Note that the variance equivalence test has a larger required sample
size than the mean equivalence test, namely N = 30 as compared to N = 11.
Therefore, this would determine the over-all sample size for the experiment.

9



3. REDUCTION OF SAMPLE SIZE

Suppose that it is desired to reduce a large sample of size M to a

smaller size n (n < M). The purpose of this section is to describe the

method of reduction. It is not intended here to discuss how to obtain the

original sample of M data points but the method also applies to the original

sampling since one can consider that an infinite amount of data is reduced to

M data points. Assume that all data are from the same population. If

one suspects that they come from two different populations, one has to

partition them into two disjoint groups before the analysis is performed. That

problem belongs to the topic of classification analysis. It is not discussed here.

The reduction is conceived in two steps:

1. eliminate all bad observations (outliers)

2. reduce a sample consisting of a large number of data

points to a smaller representative sample for detailed

analysis

3. 1 METHODS OF REDUCTION

Step 1. Elimination of Outliers (Bad Observations)

Often a sample data of size M contains some erroneous data which are

called outliers. These errors result from such factors as instrumentation

or human errors.

A statistic which is used to detect outliers is R/s, the range divided by

the sample standard deviation. The sample standard deviation s is the

independent external estimate of the standard deviation obtained from con-

current or past data, not from the sample on hand. A test of outliers can be

performed if the percentile points of the R/s are available. These percen-

tile points when the underlying data are from a normal distribution are shown

in Table 1 (Reference 1).
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d5 10 15 20

20 4.23 5.01 5. 43 5. 71

30 4. 10 4. 83 5.21 5.48

40 4.04 4.74 5. 11 5. 36

60 3. 98 4.65 5. 00 5.24

120 3. 92 4.56 4.90 5. 13

co 3. 86 4.47 4. 80 5. 01

Table 1. Table of 95 Percentiles, C(.95), of the Distribution of R/s

[ The parameter n is the sample size and d. f. is the number 1
of degrees-of-freedom in the independent standard deviation s.J

Let x, x 2 , .... , xM be the sample of size M. Denote x, = Min xj

and xM = Max 1xil . Then R = xM - xI and the critical region for

rejection is R/s 5 c(a), where c(a) is lOOa percentile point from the

available table. If R/s > c(a), the rejection rule is:

reject xI if (K - Xl) > (xM - R)

reject xM if (C - xl) <(xM - x-)

reject both x 1 and xM if (i - x = (xM - 3)

where x is the mean.
11



One application of the above technique in fatigue testing is as follows.

Suppose that one has a sample of large size on hand. Now assume that a

smaller second sample is obtained from the same system. It is suspected

that a few data points of the second group are set apart from the others. One

wonders whether or not they are far enough from the others so that one can

reject them as being caused by some assignable but thus far unascertained

cause. Now, one applies the above technique to decide whether the data

should be kept or not. In this case the range is computed from the second

sample and the standard deviation is computed from the first group to apply

the rejection rule described in Step 1.

If rejection occurs, then the sample size is reduced to (M - 1) or

(M -2) from M. Now a new range R 2 and a new mean x 2 are computed

from the remaining data. Then the same procedure as described above is

applied to detect the next possible outlier(s). The procedure is continued

recursively until R/s < c(a). Let N denote the reduced sample size from

which all outliers have been removed.

Example 1: Assume that the following 21 measurements are made from a

normally distributed record. Further assume that the

measurements are made sequentially at fixed intervals of time.

52 55 56 49 33 56 44

55 43 40 24 44 41 39

45 59 36 51 44 45 45

Suppose that it is desired to check for possible outliers. Assume

that the above data are obtained from the same source as 1000

previous data in which sample standard deviation was found to

be s = 6.5. Then proceed as follows.

x = 45. 52 c(. 95) = 5. 01

R = 59- 24 = 35 5.38 > 5.01

R/s 35/6.5= 5.38

12



Therefore, outlier(s) are indicated. Since (;- 24)> (59- K-),

one rejects 24 as being an outlier from the above data at 95%

confidence level. Next, one computes that

= 46. 6 (new mean)

R2 =59 - 33= 26

R2 /s = 26/6.5 = 4.00 < 5.01 = c(. 95)

Thus, all the rest of the data are kept as good observations.
2

The variance s of 20 remaining data points is 52. 46.

Step 2. Resampling

Now assume that it is desired to reduce the sample size from N to n,

(n < N). Suppose that the N data points are numbered 1 to N in an arbitrary

manner. Three methods of reduction are discussed below.

a) Simple Random Reduction

This method is the simplest one. One simply randomly selects n

points out of the sample of size N. A convenient method of selecting random

samples is to apply commonly available "random number" tables. If one

reads 23, 4, 13,... from a table, then one selects the 23rd, 4th, 13th. ...

data points from the N data until a total of n data points is obtained. The

variance of the mean, Var(K), of the selected data in terms of original N

data is (N -n) 2 (1

Var () = Nn ns

2

where s is the sample variance of the N data points. Sometimes it is

descriptive to talk about the precision of the estimate. Precision is defined

as the reciprocal of the variance. Thus, in the case of Eq. (11), the

precision of R obtained by a simple random reduction is

13



P(O) Nn 2

(N - n) s

It refers to the measure of precision of 5E obtained by repeated application of

the same reduction procedure. It is obvious that the less the variance, the

higher the precision of any estimate.

b) Systematic Reduction

Let k = [N/n] be the greatest integer not larger than the quantity N/n.

Partition the N data points into n disjoint subgroups of size k. In sampling

theory these subgroups are called strata. Since N is not, in general, an

integral multiple of n, different strata may vary by one data point in size.

Select one sample data point from the first stratum at random and every kth

data point thereafter. The variance of systematically reduced data is

n k

Var(K) ( - E Z (x..- (12)
s N il j=l lJ 1

where s is the variance of the N data points. x .. denotes the jth sample1J

point of ith stratum and -R. denotes the mean of ith sample. Equation (12) is
1

proved in Reference 2. When Eq.(1l) is compared with Eq. (12), one can state

that the mean of a systematically reduced data is more precise than the mean

of a simple random sample if and only if
n k nL

N - ) Zs _ N-1i=Z •(xi. _)2 < Nn) s 2

or

n k

2 1 57 Z 2

Since N/n,•k one obtains the following condition.

14



n k

s2 < I nZ _.)2 (13)Sk(n - 1) E(zij i
i--I j=l

This result implies that systematic reduction has more precision than simple

random reduction if the variance within the systematic sample is larger than

the original variance of N data. That is, systematic sampling is favorable

when the reduced data are heterogeneous and unfavorable when they are

homogeneous. If the population has a periodic trend, effectiveness of the

method depends on the value of k. The least favorable case occurs if k is

an integral multiple of the period. A favorable case occurs when k is an

odd multiple of a half period. See Figure 2.

Figure 2. Periodic Variation. B denotes unfavorable case and
G denotes favorable case.

In the case where the population values occur as a linear trend, the systematic

method is the most efficient technique available.

15



Example 2: Suppose that it is desired to reduce the 20 data points of

Example 1 to size 5 by the systematic reduction. Arrange

the data in 5 strata as follows.

4 )2
stratum data= (x. 2-. 2
No. i =1 s

1 52 55 56 49 30 10.00

2 33 56 44 55 350 116.67

3 43 40 44 41 10 3.33

4 39 45 59 36 313 104.33

5 51 44 45 45 31 10.33

Now choose a data point at random from the first four

measurements, say 55 (second data point). Then select

every fourth data thereafter. Thus, the reduced sample

data are

55 56 40 45 44

The mean and variance of the mean of a reduced data in

this case is obtained by Eq. (12)

K= 48.0

Var(3) = (19/20) 52.46 - (1/20)(30+350+10+313+31)

= 49.84 - 36.70 = 13. 14

If a random reduction is used for the above data, one

obtains by Eq. (11)

Var (R) = (20 - 5) 52.46 = 7.87
(20)(5)

Thus, in the above case, the random reduction gives a

more efficient result.

16



c) Stratified Reduction

In this method the N data are partitioned into n disjoint strata of

approximately equal size according to some characteristic such as time or

magnitude. Then one data point is selected from each stratum at random.

(See Figure 2. ) If one suspects any periodic trend and the period is unknown,

then the stratified reduction is recommended over the method (b). The estimate of

the mean by the stratified reduction is given by

k

.xi

(14)
n

and its variance is
n

Var (3)=(•-n ) -Z s (15)

where k is the stratum size, and s. denotes the variance of the ith1

stratum. Note that kq [N/nI.

The set of elements upon which the sample size reduction operation is

performed is called a frame and in many practical situations a given popula-

tion conceivably contains a number of different frames. In Figure 3, a

system is stratified into three zones in two ways.

A
A B C B

C

Frame I Frame II

Figure 3. Zone Stratifications of a System

17



Consider two frames of stratification as shown in Figure 3. Suppose it

is known that the between-strata variance of three subregions A, B, and C

of Frame I is greater than corresponding variance of Frame II. This implies

that the sum of within-strata variance of the Frame I is less than that of the

Frame II. Consequently, by Eq. (15), Frame I is preferred over Frame II.

Thus, the choice of a frame is often an important aspect of sample design.

In general, a good frame is one which is heterogeneous between subregions

and homogeneous within each subzone. Total sample size is then allocated

into three zones according to the importance of each zone, such as size and

sensitivity.

Example 3: Consider again the data from Example 2. By stratified

random reduction, one selects one data point from every

stratum. That is, first point from (52, 55, 56, 49) and

second point from (33, 56, 44, 59), etc. Thus, the

reduced sample data might be

55 44 40 45 51

The mean and its variance of a reduced data in this case

are obtained by Eqs. (14) and (15).

x= 47. 0

Var (x) =[(20-5)/20] -- (10.0+116.67+3.33+104.33+10.33)
5

= 7.34

Thus, stratified reduction method yields the most efficient

estimate in the above example.

18



4. AUTOCORRELATION FUNCTION ESTIMATES

Certain arbitrary quantities must be decided upon for autocorrelation

function estimates. First, an acceptable percentage normalized standard

error E referred to the value of R(T) at T = 0 (the mean square value) must

be established. Second, the bandwidth of the signal being analyzed must be

known or estimated.

It can be shown, that under the assumption of a Gaussian process, the

normalized standard error e = e (0) is

1
(16)

where T is the record length used in the analysis, and B is the signal band-

width appropriately defined. For Eq. (16)to theoretically hold true, the

process x(t) should have a flat spectrum B cps wide with a perfectly sharp

cutoff. In practice, B is much more difficult to define. For experiment

planning purposes, one can only be careful to estimate the bandwidth B

conservatively too small. When an experiment is completed or one has

other reasons to know the shape of the spectrum, other problems arise.

For example, suppose the spectrum of x(t) has the shape indicated in the

sketch below.

Gx(f).
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In such a situation, probably one should choose as B the sum of the half-

power point bandwidths of each peak. Similar judgments must be made in

other complicated situations.

From Eq. (16), it is straightforward to compute a required record

length T. For example, suppose it is desired to maintain e = 10% and

B is known to be 2000 cps, then

"1 1
T - - -= . 05 sec.

Be 2 • 103 x 10-2

If one collects N independent discrete observations, then the variance

of the autocorrelation estimate is (see Reference 3, p. 358),

R 2(0) + R 2(T)
Var[ (T)= 'x (17)X N

Note that this expression depends on the true (unknown in general) auto-
correlation function R X(T) of the process being analyzed. The normalized

standard error is

E(T ) N 
(1 8 )

From this equation, if R x(T) is known, one can obtain the necessary sample

size for any point on the correlation function.

Certain problems arise in deciding upon the necessary accuracy for

a correlation estimate. For example, a typical correlation function has the

form illustrated in Figure 4 below.

20



it
R(T)

Figure 4. Typical Autocorrelation Function

A percentage-wise accurate estimate of R(T) at one of the points where

R(T) is near zero would require an inordinately large sample size N. For

this reason, it is not feasible to select sample sizes which will maintain

small percentage of reading errors for all values of R(T). A "percent of

full scale" type error is a more reasonable quantity for this application.

That is, the value of R(T) at T = 0 (the maximum value of R(T)) should

dictate sample size requirements for estimating the entire correlation

function. Note that in Eq. (17) R 2 (t) is bounded above by Rx2 (0) and
x

below by zero so that the maximum variability takes place at R x(0). In

this sense, basing sample size requirements for Rx (T) entirely on the

point T = 0 is conservative and proper. If one employs the often used

relation N = 2BT for relating continuous and discrete samples, then

Eq. (18) will reduce to Eq. (17)at T = 0, namely,

1 (19)

The relation N = 2BT gives the degrees-of-freedom in a signal x(t) with

a flat spectrum of width B with a perfectly sharp cutoff. Degrees-of-freedom

in this case means the number of independent points which uniquely determine

x(t). For this special situation, degrees-of-freedom is equivalent to the

sample size N (i. e., N independent observations). Additional discussion

of this point is given in Section 4 concerning power spectrum estimates.
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When one is considering discrete observations which are statistically

correlated, modifications have to be made to Eq. (19). In terms of the

true autocorrelation function, the expression for e becomes

2 4 R 2(rh)

+N L (N-r) x (20)N r.l R 2(0)
x

If one assumes the easily analyzed case of an exponential correlation function

which occurs physically in the case of lowpass R-C filtered noise, then

Eq. (20) becomes approximately

-•_•-• 2bh+

S=b(21)
e - 1

whe re

R x(rh) = R x(0) ebrhl (22)

For Eq. (22) to apply, the requirements N > 100, bh > 0. 01 should be met.

This is only an approximation for other physically occurring situations, but

should usually be conservative and quite useful. In Figure 5, several curves

are drawn for various values of bh from which one can obtain N as a

function of e or vice versa. The parameter b in Eq. (Z1) and Eq. (22) is

the noise bandwidth of the process x(t). For example, assume x(t) is

sampled at an interval h = 0.01 sec. apart and that the noise bandwidth is

b = 60 cps so that bh = 0.60. Further assume one wants to maintain E =5.0%.

Then, by inspecting Figure 5, one notes that a sample size N = 1490 is

necessary. Note that this implies a record length of T = Nh = 14.9 sec.

This compares with N = 800, T = 8.0 sec. required for the case of independent

samples which is given by the bottom curve for bh = co.
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5. POWER SPECTRUM ESTIMATES

As with the case of the correlation function, certain parameters must

be specified in advance. These are the resolution bandwidth B of the

analysis and the normalized standard error e. The bandwidth B here should

not be confused with the signal bandwidth. Depending on whether the analysis

is to be performed with analog or digital methods, slightly different procedures

are used.

Assume that x(t) is a Gaussian process with a true power spectrum

G(f) which is approximately constant within the resolution bandwidth B.
1% 2

Then it may be shown that an estimate G(f) follows a X distribtution with

k degrees-of-freedom given by

AZA G f) ×k
G(f) - (23)k

Here it is assumed that m points of G(f) B cps apart are computed so that

N = ink. The symbol ""..~1 is to be read "distributed as." The variance of

this quantity is then obtained directly as

Var[G(f)] = Cý(f) (2k) = G(f) (24)

The normalized standard error is

Var [ G(f)] 2 1 (25)
G(f) k

using k = 2BT with a proper interpretation here for B.

To illustrate Eq. (25), if it is desired to maintain e at, say, 101/,

and B = 10 cps, the required record length is

T 1 - - - 0 sec.
Be 101.01)
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and the required number of degrees-of-freedom in each individual point of
A
G(f) is k = 2BT = 200.

A proper definition of the analysis bandwidth has not yet been given.

It is actually a difficult problem to specify a proper correspondence between

the degrees-of-freedom N and the BT product. In Reference 4 an "equiva-

lent bandwidth" is given as

IIG f(f) df I
B = df(26)

where G Af(f) is the power spectrum resulting from the process after it has

been filtered by the analyzer filter. For practical purposes, either the noise

bandwidth or half-power point bandwidth of the analyzer filter may be used

instead of B due to the sharp cutoffs on modern spectrum analyzer filters.e

The details of these considerations are discussed in Reference 5.

Therefore, in the case of analog power spectra computations, the half-

power point bandwidth may be used in Eq. (25) for computing required record

lengths. This, of course, assumes the filter bandwidth to be smaller than the

signal bandwidth which must be the case for a proper analysis.

In the digital case, the analysis resolution bandwidth B is determined

by the sampling interval At and the number of points, m, computed for the

correlation function. In fact, for practical purposes, B is given by

B m1 (27)mat

As indicated in Reference 4, page 36, choosing B in this manner is not quite

theoretically correct for actual filters but is satisfactory for almost all
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practical purposes. This relation would be right if the filters effectively

occurring in a usual digital computation had perfectly sharp cutoffs. In

practice, they appear as indicated in the sketch below. The overlap of the

filters creates a small amount of correlation in neighboring points of the

spectrum estimate. This causes a slight inaccuracy in Eq.(17).

B B

--7

o a a I | I a

f, f f, f •, •1 Z I 3 4 1
- I I I

I n a p••3 4 fj ,fl f2 f3f " fm fl f2 13"" ~ fm

Ideal Filters for Digital Actual Filters for Digital
Spectrum Estimates Spectrum Estimates

A procedure for selecting the sample size and record length for a

digital analysis is as follows. Assume frequencies up to a cutoff frequency,

f = 2000 cps, are of interest and that a resolution bandwidth of B = 10 cpsc

has been chosen. The maximum lag number for the correlation function is

then
Zf

m. C- 400 (28)B

To avoid aliasing below 2000 cps, the sampling frequency must be twice the
frequency of interest, which accounts for the 2 f in Eq. (28). This gives

c

a sampling interval of
1 1

At - - - .00025 sec.2f 4000
c
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Now if it is decided to maintain a normalized standard error e = 10%, the

required record length is

T 1 - 1 10 sec.
2 10(.01)BE

The total number of observations required is

T = 10
N= - .00025 = 40, 000

The final calculations will then give 200 points of G(f) at 10 cps intervals

each haying 200 d. f.

There is a point to note when comparing the power spectra and correla-

tion function estimates. When the assumption of a constant spectrum is

approximately fulfilled, then one obtains independent estimates of G(f) while

the point estimates for R(T) are not independent but correlated. Therefore,

the normalized standard error requirements only apply to any singl given point

of R(T) at a time. However, the limits for G(f) apply to all computed points

simultaneously. That is, one could draw the + 10% confidence bounds about

G(f) as a whole but not for R(T) as a whole. However, the basic considera-

tions for estimating sample sizes are not affected.

An additional point that one should realize is that specifying E to be,

say, 10% only means that about 68% of all the estimates obtained would be

within + 10% of the true value (assuming the estimates are normally distributed).

Also, with this assumption, about 95% of the time, estimates will be within

+ 20% of the true value. If one wants the estimates to be, say, within +p%

of the true value 95% of the time, then one must choose E =(p/Z)%. Of course, if

one draws a + I e = 10% confidence band for 200 points in a power spectrum esti-

mate, one would expect 68% of the estimates to be within 10% of the true value.

This means 32% of Z00 or 64 true points would be expected to lie outside the

bands. One must adjust probabilities appropriately if it is desired for no true

value to lie outside the confidence band with a given probability.
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6. CROSS-CORRELATION ESTIMATES

Let R x(T) and R y(r) be the autocorrelation functions of x(t) and y(t)

and let R XY(T) be the cross-correlation between x(t) and y(t). Then the

variance of R xy(T) is

R (0)R (0) + R (T)

Var [R(xy()] = N (29)
Xy N

Equation (29) is a direct generalization of Eq.(17) and is the formula for the

variance when the processes are jointly Gaussian and the estimate of Rxy (T)

is based on N independent observations. The definition of the normalized

standard error for R (T) is
xy

A1

E Var[R (T)] R (0) R (0) /R2 (T)]+ 1ji (0

R2(T)N

In this case it is not convenient to talk about the normalized standard

error at T = 0. The cross-correlation function Rxy (T) does not necessarily

have a maximum at T = 0 as do R (T) and R (T). However, one canx y
show that the cross-correlation function is bounded by the product of the zero

values of the two autocorrelation functions, namely,

R 2x(T) < R (0) R (0) (31)
XY x y

Therefore, if the cross-correlation function takes on a value close to

the maximum possible value, then it makes sense to employ the error

formula

8(32)
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This is justified since if R 2 (T) is close to R (0) R (0), then
xy x y

R (0) R (0)
x~ 1

R 2(Tr)
xy

and Eq. (30) reduces to Eq. (32).

If one uses this relation for sample length requirements, a safety factor

should be inserted since positive correlation in the observations will tend to

reduce the effective sample size N. The relation N = ZBT then becomes

less and less applicable. This is demonstrated in the graph of Figure 5

since increasing values of bh indicate larger and larger correlations of

nearby sample points. No such convenient analytical guideline as Figure 5 is

available for the cross-correlation case however since the forms of cross-

correlation functions are not so conveniently classified.

A tacit assumption is made throughout this discussion that a common

bandwidth B exists for the two signals. This, of course, is not necessarily

true for practical applications. For experiment planning purposes a con-

servative choice should be made.

As an example, assume two signals x(t) and y(t) are to be cross

correlated. If their bandwidths are estimated to be B, = 2000 cps and

B2 = 1000 cps, choose B = 1000 cps. Now, if a substantial peak is expected

such as is the case when one signal is a time delayed version of another, then

the relation

1
-T --

may be reasonably employed. This quantity represents a "percent of full

scale" error now since the peak value of R xy(T) should be nearly as large

as the product R x(0)R y(0). If f = 10% is the desired error, then for

B = 1000 cps, the required record lengths are

T = 1/EZB = 0.1 sec.
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7. CROSS-SPECTRUM ESTIMATES

The cross-spectral density function is of major interest for the determina-

tion of frequency response functions of linear systems. Therefore, the discussion

in the next Section 8 implicitly covers the most important aspects of cross-

spectrum estimates. About the only time that the cross-spectrum would be of

interest for its own sake is in determining a phase relation between two records.

This, of course, would be equivalent to estimating a time delay between the

two records in which case the cross-correlation function would be employed.

It is fortunate that the cross spectrum is not usually of direct interest

itself. No convenient formulas exist for the variances and the sampling distri-

butions are very complicated. However, the variance of the co-spectrum and

quad-spectrum are bounded by (see Reference 6)

G x(f) G y(f)
Var [ (f)] BT

(33)

G (f) G (f)

Var[Qx(f)] - B

In the above equations

G (f) = C xy(f) -jQ xy(f) (34)
xy xyy

where C xy(f) is the real part (co-spectrum) of G xy(f) and Q xy(f) is the

imaginary part (quad-spectrum) of G (f).xy

One encounters problems similar to that of cross correlation in trying

to transform the quantity of Eq. (33) to a normalized standard error with

respect toI GXY(f)j 2  From basic theory it is known that

C (f) + Q 2 (f) = IG (f) 2 < G x(f)G (f) (35)
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but one does not know how much less IG (f)j 2 is than Gx(f) G y(f). Therefore,

in trying to divide by , C (f), or Q (t) one cannot make any' xy xY

statement about the magnitude of the resulting normalized standard error.

That is, if one defines

2 (f) _ Gf)f) 1 (36)

then an error formula of the usual form (I/-•T) can be employed only

if the assumption that G (f) G (f) G (f)I This, at best, is most likely

somewhat questionable. In fact, this is strictly true only in the case where

one has a linear system relating x(t) and y(t) and there is no extraneous

noise affecting the measurement of these quantities. Therefore, it is

recommended that cross correlation or frequency response function error

formulas be used for experiment planning purposes.
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8. FREQUENCY RESPONSE FUNCTION ESTIMATES

Sampling variability for frequency response functions is more complicated

than the previous functions. The frequency response is a complex-valued quan-

tity which can be described in terms of a gain factor and a phase factor. The

errors in gain factor estimates and phase factor estimates as a function of

record length (sample size) are treated in Reference 7 and will be discussed

here.

The frequency response function characterizes a linear system. If one

knows the wtighting function h(t) for a constant parameter, time-invariant

linear system, which is the response to a unit impulse input, then the

frequency response function H(f) is given as the Fourier transform of h(t).

In equation form,

H(f) = h(t) e-j2rft dt (37)

Also, H(f) is a complex number in general and may be written in exponen-

tial form.

H(f) = I H(f) I eJ(f) (38)

where j = - , I H(f)I is the gain factor and ý(f) is the phase factor of the

linear system.

When the frequency response function H(f) is the end result of interest,

a formula developed in Reference 7 gives error in the gain factor IH(f)l and

phase factor c(f) of H(f) as a function of the true coherence function y (f)

and degrees-of-freedom k.

The frequency response function H(f) is related to the input power

spectrum G x(f) and to the cross spectrum G (f) by the formula
x xy

G (f)

H(f) - xy (39)
Gx(f)
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The coherence function is also directly related to the input power spectrum

G x(f), the output power spectrum G (f), and to the cross spectrum G xy(f) by

Y 2Mf) IX (40)
xy = G x(f) G y(f)

The coherence function gives the degree of linear relationship (correlation)

as a function of frequency, between the input x(t) and the output y(t).

The error formula for frequency response function measurements is

P =Prob < sin 6 andA<(f) -(f). 6J

" " 1 2 (f) M k/2

~1 iy:7cs& (41)
1 -1 - (f) Cos2

where k = 2BT degrees-of-freedom for the espectral estimates. For small

values of 6, sin 6 Qf 6 so that both inequalities hold for the same numerical

values. One applies the above formula by solving for k. Thus,

1 y(f) cos6 1-P

[1 - 2 y(f)
klog 2 2 2 log (1- P)

11 Yxy (f) Cos 6

k= 2 log (1 -P) (42)

log [2xYrz ]

S-y (f) Cos 6
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To apply Eq. (42), one chooses a value for 6, say 10% = . 10, and a

value for P, say P = . 90. Assume for the moment y 2 (f) is known to be
.90. Now, a value for k is calculated, in this case k% 53, which will

maintain the sample gain factor I H(f) I within 10% of the true gain factor,

and the sample phase $(f) within . 10 radians of the true phase for approxi-
2

mately 90 out of 100 experiments. Different values for y 2(f) lead to different
xy

k. This formula applies to one value of JH(f)j and ý(f). One needs a total

sample of N = mk for m points of the frequency response function.
2

The choice of a value in advance for y 2(f) is strictly a matter of

judgment if prior data is not available. From basic considerations,
2

0 < y(f) < 1, analogous to the bounds on correlation coefficient. For

purposes of planning an experiment, one must make a judgment based on the

degree of linearity believed to exist and the amount of extraneous noise

affecting the measurements. Both of these factors will reduce the coherence

of the system from a theoretical maximum value of unity. Also note that

coherence is a function of frequency so one must either restrict the range of

frequency for which the computed k will apply or one must estimate a worst

case in order to be conservative.

For convenience, several curves have been plotted giving k as a
2

function of y . Three sets of these curves are plotted corresponding to

6 = . 05, . 10, and . 15. In each set the curves correspond to P . 80, . 85,

and . 90. These curves are displayed in Figure 6.

In converting k or N to a record length, the same considerations as

for the ordinary power spectral density function apply. One does not have

the problems associated with the cross-correlation function since in com-

puting power spectra, the process is filtered by the analyzer (or effectively

so in the case of digital methods) and the filter bandwidth is employed in

the relation K = 2BT. In this situation one has the k required for a given

accuracy of one estimate for a fairly narrow bandwidth B, where B is
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the analysis bandwidth. Therefore, since B is small, T must be relatively

large. For the example where k = 53 and B = 10 cps,

k 53
T =-k 53 = 2.65sec

2B 20

Another formula exists from which one may obtain confidence bands

which are a function of the sample quantities obtained after the experiment has

been performed. This is to be contrasted with the previous formula which is

useful for planning where the true coherence must be estimated in advance.

The (1 - a) confidence limits for gain and phase are given by

IH(f)I _A Af) < IHf~ A I""I +ý(f) (3

A A f) A A
4(f) W 4f () + AW() (4

where 2 A

rA(f) [ 1 F 1 (2, ZBT-2) - y n (45)BT-1 - •(f)

x

and
A A(f)

A.c(f) = Arc sin r(f) (46)

In Eq. (45), F 1 a(2, 2BT-2) is the (1 -a) percentile of the standard F

distribution with degrees-of-freedom, n1 = 2 and n 2 = (2BT-2). Hence,

Ea s. (43) and (44) give bounds that include the true gain I H(f) I and true

phase ý(f) with confidence (1 -a). Note that all quantities involved in the

relations are sample values. These formulas are all special cases of the

general equations found in Reference 8.
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To illustrate these formulas, suppose the following values are obtained

from a frequency response function estimation experiment.

A 2
G x(f) = 0.20g /cps

y 0

A2
Y ¥Y(fo5 = 0.80

JA~o)2 0.40
A 0
4(f 0 ) = 7r/4 radians = 45

B = 10 cps

T = 1 sec

a = .05

F (2, 18) = 7. 21 (see Reference 1 tables for example)

.95

Note that in these hypothetical values, the square of the gain factor does not

equal the ratio of the output to the input spectra. This might happen in

practice as a result of the effects of extraneous noise or nonlinearities.

From Eqs. (45) and (46), the following values are obtained.

I

A 1 (1(I 0.80)(0.10) 2

r(f0  (7.21) 0.20 = .283

As0 .283 260 37'

= Arc sin ---- 3
0 .632

There, 95%confidence intervals corresponding to Eqs. (43) and (44) are:

.63 - .28_ I<N{(f0 )I < .63 + .28

00
450 - 26037' < 4(f0 ) < 450 + 260 37'
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9. PROBABILITY DENSITY ESTIMATES

Considerable experimental and theoretical work is still in the process

of being performed to develop proper error formulas for probability density

estimates. Experiments have been conducted in the past and are described in

Reference 9. The use of the error formula developed experimentally in that

report is recommended at the present time. This formula will now be

presented along with its limitations.

If one neglects certain bias terms which are unimportant in usual

applications, then theory predicts a variance for probability density estimates

of

E[P(X)] Vjar [ A(X)_ _____

E [(x)] Np(x)Ax ZBTp(x)Ax (47)

In Eq. (47), B is the bandwidth of the process where a perfectly sharp cutoff

in the spectrum is assumed. Also, T is record length, p(x) is the true

value of the probability density, Ax is the amplitude "window" or resblution

of the measurement, and N is the number of independent observations

(sample size) used in the estimate.

The requirement of independent samples is not fulfilled in existing

analog measurements nor is it necessarily in digital procedures. Experiments

were performed (Peference 9 ) which indicate that this is a significant factor.

The results of those experiments indicate that a usable error formula is

0.20 (48)
V BTp(x)Ax

It must be emphasized that the above equation was developed only for

one specific instrument and is possibly valid for only that instrument. For

example, if a process was digitally sampled, and the observations were un-

correlated, then, if the density function was calculated on a digital computer,
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Eq. (47) rather than Eq. (48) applies. Experiments are presently being

designed so that error formulas similar to Eq. (48) may be developed for

other specific instruments.

In Eq. (48), p(x) would be used rather than the true value p(x) if

one was establishing limits about a measurement of p(x). Also, in practice,

noise bandwidth or half-power bandwidth can be used for B. As mentioned

above and described in Reference 9, the above formula was obtained with

only one specific instrument and only approximately Gaussian signals were

analyzed. Therefore, as with most other error formulas in existence,

one must be prudent in its application when the underlying assumptions (such

as non-Gaussian noise and different instruments) are not satisfied. However,

Eq. (48) represents the best available result and does provide one with

reasonable guidelines for experiment planning purposes.

As an example of the application of Eq. (48), assume one has a signal

x(t) with a flat spectrum out to B = 2000 cps. Further assume an error

e = 1% is desired for a point one standard deviation (1.0u-) away from the

mean and that the resolution is to be Ax = 0.1o-. For planning purposes,

suppose one expects a near normal density function. Then one obtains

p(l.Ou) = .242 from tables of the normal density function. The required

record length for the experiment then is

T = = = 8.26 sec (49)Bp(x) Axe2 2000(. 242)(. 1)(. 0001)

For expected density functions other than Gaussian, one substitutes the

appropriate value for p(x). Also, it will be most convenient to work in terms

of standardized units, e. g., x/a-, rather than any absolute terms.

The final fact to be emphasized is that Eq. (47) or Eq. (48) apply only

to a given single point selected in advance on the probability density function.

The correlation from one point estimate to the next is not known and one

cannot draw confidence bands about the entire curve simultaneously. One can

only do this for one given individual point.
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10. THE WEIBULL DISTRIBUTION FOR FATIGUE TESTS

When constructing a statistical model for life length or fatigue failure

rate of a structure one often finds that an assumption of normality is not

satisfied. For example, many life length distributions are markedly skewed.

The instantaneous failure rate or so-called hazard rate (see Section 10. 1 for

the definition) of the normal distribution is a strictly increasing linear func-

tion of time which is nof'desirable in many structural fatigue models.

In order to describe the random behavior of fatigue life, a number of

probability distributions have been proposed. Among these, the exponential

distribution is best known and most widely used in electronic, chemical, and

other application arieas.

The exponential distribution has a number of desirable statistical

properties, but its usefulness is limited because of the following property:

If the life length T of a structure has an exponential distribution, then

previous use does not affect its future life length. This fact is easily seen

in the following relation.

Let T be the random variable distributed with an exponential proba-

bility density.

1 -t/a'
f -(t) = e if t > 0a

= 0 if t < 0

Then

P(T > a+bIT > b) = P(T > a+b, T > b)
P(T > b)

Now, if T > a+b, then it is simultaneously larger than b, hence

P(T > a+b, T > b) P(T > a+b)
P(T > b) P(T > b)

e-(a+b)/a 2 = P T > b
-a/a =e =PT>b

e
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In words, given that a structure has lasted for b or more units of time,

then probability of lasting "a" or more additional units of time is the same

as the probability of a new unit lasting a+b or more units of time. In

short, a characteristic of the exponential distribution is a constant failure

rate when it is used as a failure rate distribution. That is, the average

number of failures which occur in a unit time period remains constant with

time. Thus, if a structure has a constant failure rate the exponential

distribution is a tailormade model.

In general, the distribution of life length for some object has a unique

shape, scale, and location. For example, any particular structure has a

unique failure rate. The Weibull distribution has three parameters which

determine shape, scale, and location. Thus, the life length of many

structures can be suitably modeled by determining each of three parameters.

Among others, one of the advantages of using the Weibull distribution is to

be able to model so many different fatigue life distributions; it can be

exponential, Rayleigh or approximately normal. The following sections

present some of the statistical properties and applications of the Weibull

distribution.
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10. 1 DEFINITION OF THE WEIBULL DISTRIBUTION

The general form of the Weibull distribution is:

S- e if t 5y
W(t) = (50)

0 if t <y

and the density function is

(tY P- e if t >y

w(t) =(51)
0 if t < y

In the above equations, a, P, and y are parameters of the distribution

generally named as follows:

a = scale parameter

S= shape parameter

y = location parameter

(a and P are not to be confused with level of significance and probability of

Type IH Error which they often denote.) The parameter a is analogous to

the variance of the normal distribution in that it's value affects the scaling

of the distribution. The parameter y is a location parameter as is the

mean of a normal distribution in that it translates the distribution. This

parameter y may be interpreted in life length testing as the minimum

length of time that passes before any failure can occur. The parameter

is termed the shape parameter since it affects the basic shape of the

distribution.
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Figure 7. Four Shapes of the Weibull Density Function

Four different shapes depending on P are illustrated in Figure 7.

The shape parameter P describes the mode of failure. Thus, for P = 1

the failure rate is constant over time. P < 1 indicates that the failure rate

is a decreasing function of time, while for P > 1 the rate is increasing with

time. A more descriptive way of looking at a statistical fatigue model is

by considering the (instantaneous) failure rate or so-called hazard rate.

It is the instantaneous rate of change in failure probability. That is, the

hazard rate H(t) is defined by

H(t) = lim P(T > t) - P(T > t+At) = f(t)

At-.0 AtP(T > t) P(T > t)

where f(t) is the value of density function at T = t. Thus, the hazard rate is

the density function of time to failure given that the system has not failed prior

to time t.
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In the case of the Weibull distribution, the hazard rate is

H(t) = -Y) (52)

Equation (52) shows that the Weibull distribution reduces to the exponential

distribution when P = 1. From Eq. (52), it is noted that the exponential

distribution is associated with a constant hazard rate 1/a. This fact was

shown using basic probability notations in the introduction to Section 10.

The hazard rates of the Weibull distribution for several values of

and with the other parameters fixed are illustrated in Figure 8.

P=4 P=3 P=

H(t)

4

3

2

P p=1

1 2 3 4 5

Figure 8. H(t) with y = 0, a = P, f= 1,2,3,4
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The shape parameter P may be interpreted in terms of the hazard rate

as follows:

S> 1 an increasing hazard rate

S= 1 a constant hazard rate

S< 1 a decreasing hazard rate

Let b = 1/3. Then one finds the following values of the first two

moments and the median for the Weibull distribution (Reference 10):

mean = = y + &(b!) (53)

variance = 2 ' 2(b!) - (b!)2] (54)

median m 5 = Y + a(log 2 )b (55)

When 3 = 3. 57, then the Weibull distribution becomes a good approxi-

mation of the normal distribution. This is because

b! = r 1' - (.693) = (log 2 )b (56)

and the mean and median are approximately equal when 3 = 3.57.

Note that the distribution has positive skewness if P < 3.57. The
z

Weibull distribution becomes the Rayleigh distribution (X with Z d. f.)

when =2.
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10.2 WEIBULL PARAMETER ESTIMATES
When the Weibull distribution is assumed as a statistical model,

the problem of estimating three parameters arises. Two methods, maximum
likelihood and minimum chi-square methods are generally applied to estima-
tion problems. It is not intended to give an exhaustive discussion here on
statistical inference concerning the Weibull distribution. Only a few

applicable results are presented.

(a) Maximum likelihood estimate (M.L.E) of a when y and P are known.
The likelihood function to be maximized is

L[w(t)] :H a _il (Ti - Y) -1 exp[- (57)Si=l

where T1. T2 .... T are the sample data (times to failure). Logarithms
are now taken which simplify the solution of Eq. (57):

log L[w(t)] = nlog(4 + log(T. -y)•-1 - ( (58)

When Eq. (58) is maximized with respect to ap assuming y and 3 are
known constants, one finds

n
n (Ti-y)

(59)
n

(b) M.L.E's of p and y. When Eq. (58) is maximized simultaneously with
respect to 3 and y, one obtains the two equations
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Snlog a + og (T y)- ) log (Ti = 0Y) (60)

n n PT l-I

-([-i1) +T-y = 0 (61)
1 i "=

These two equations along with Eq. (59) have to be solved to yield M.L.E's

for a, P3, and y. This cannot be done explicitly (Reference 10),but an

iterative solution by computer is possible.

(c) A very useful result is derived by Menon (Reference 1 1 ). Let

x. = T. - y. Let yi be formed of those negative values obtained from
1 11

log x. - log a. while the z. are formed of those positive values
1 1

obtained from log x. - log a. That is, define yi and z. as follows.
1 1

log x. - log a if log x. - log a < 01lg.lg 1

yi =

0 otherwise

log x. -log a if log x. - log a 5 0
1 1

Z. -

1 0 otherwise

Then, when a and y are known,

n n n (62)

= ) + 1.85

A .66 b 2

Var (b) - (63)
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where b = 1/P. Note that the summations on yi and z. run to n since
1

n values for each of these variables is defined even though some of the

values are zero. This is convenient for this theoretical work but for

computational purposes, one summation would run from 1 to p and the other

from ito q where N=p+q.

When a is unknown but y is known,

A 1 Tr (n-1)

(log x) log xn

A 1.1b 2
Var (b) nb (65)

n

where b =1

Example: Suppose

15
~log y.=-5 , log z .5.4

i=l1

Then, using Eq. (62), one obtains

A 1

(-.74)(-.5) + (1.85)(5.4) = .0965

A
and using Eq. (63), the variance of b is computed to be

A (.66) .06
Var (b) .0965 = 4.72

15
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(d) Graphical methods may be used for estimation. Through the use of the

Weibull probability graph paper, a simple method is available for ob-

taining estimates of the parameters a and P3. This technique is

discussed in Reference 12.

10.3 WEIBULL PARAMETER CONFIDENCE LIMITS

(a) Confidence limits for ap when P and y are known are now given.

Let yi = T.i- y for i= 1,2,...,n and y= T-y. Then
11/1

P(yP< y0 ) 0 P(y< YO

y0

=1 
-e

It is clear that yp has an exponential distribution with a single parameter

a -. Reference 13 shows that 2na la is distributed as chi-square with

2n2dere-offeeo Xn). Thus, the desired (1 - E) confidence

interval is defined by the equation

Ax A,,

[X 2 2nap 2 1 2na <p 2n< 1 (
P 2n(c/2) <-a- <X2n(l_ E/2) [Xp ) < a<. 2 2-l- (66)

2n(l- E/2) 2Xn(E/ 2 )

2 2

where X2n( / 2 ) a Zn(ld X 2 are lower and upper tail E/2 percentiles

2of the Xndistribution.

Example: Suppose at = 30 (hours), n = 9, and E = . 1 . Then

P 8540 a< 540 = P(18.70< ap< 57.51) = .9
2 8.8 7 <9.39,

Thus, 90%/ confidence limits for ap is (18.70, 57.51).
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(b) Rather conservative confidence limits for P can be constructed using

Chebyshev's inequality and Eqs. (62) and (63) or (64 and (65). Chebyshev's

inequality states that

S bl< >I 1
P[Ib_-bI < E Var b]> E 2

E

or

b - ar b <b < b + E VVar b > 1 2

Thus, if a is known

AA 1> .66
P - 6)< P <(l P 6)> ------ (67)

n6

and if a is unknown

PG(l -6)< P < •l( +6)] 2.

where 6 > 0 is a constant.

Example: Suppose one wishes to construct 90% confidence limits on P

given the data of the example in Section 10.2 (c). Let

.66
1 -- = .9, then 6 = .663. When y and a are known, one

n6
obtains from Eqs. (61), (62), and (66)

P[.0965(1-.663) < P < .0965(1 +. 663)] = P(. 033< P <. 160) > .9

Thus, the 90% confidence limits for P are (.033, . 160).
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10.4 HYPOTHESIS TESTS

(a) Suppose one wishes to test the hypothesis H0: 8=0 0 , (0 may be a, P, or y).

The likelihood ratio test is used here when sample size n is large. Let

n7 " w(ti 100)
> = i=1 (68)

n

TI w(til1)
i=1

where yr(t 1I00) is the density function given in Eq.(51) when 8 = 80. Similarly,
A A

w(ti 10) denotes the value of the density function when 8 = 8 where 8 is the
2

M. L. E. of 8. When n is fairly large -Zlog X is approximated by the X
e

distribution. Hence, a value of X is obtained from the sample data and -Zlog X

may be compared with an appropriate value of y, obtained from a table.

Example: Suppose one wishes to test the hypothesis H0 : 0 = 1.5 with

sample size n = 30. Assume that the computation by

Eq. (68) yields the value X = .11. Then -2 loge X = 4.41.

Since the 5% critical value of X is 3.84, the hypothesis is

rejected at 95% confidence level.

z

(b) The x distribution may be used for a Weibull goodness of fit test. A

criterion for testing the goodness of fit of a Weibull distribution from n

samples is

k f.2

X 2 = L ni (69)
k- i=1 np.i

where pi is the probability that a failure occurs in the interval t ill to t..

f. is the actual number of failures in the interval t. to t.. The quantity k
1 i-lI

is the number of cells such that approximately np.i > 5 for each i. If this
2 1

condition is satisfied then X is approximated by k_ distribution.
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10.5 RELIABILITY PROBLEMS

Suppose one has several systems each of which could be used for the

same purpose. Very often one has to choose the one which is best suited

for the purpose. Define reliability R(t) as the probability that a system

will perform satisfactorily for at least a given period of time t. In the

case of the Weibull distribution

R(t) P(T > t) = e

A commonly used decision procedure is to choose a system with the maxi-

mum reliability R(t 0 ) if the system has to last to time t0 in case of non-

replacement policy. This policy applies when the system is not replaceable

or one does not wish to replace the system if it fails. Another situation is

the replacement policy; this is a policy of immediate replacement when the

system fails. A simple decision procedure in this case is to choose a system

with the maximum mean life.

Example: Suppose a structure is characterized by y = 10 hours,

a = 80 hours, and P = 2. Then

R(50) = [( 5 0 1 0 )/ 8 0} =779

mean life = 10+ 80 (1! = 80.9 hours

That is, the probability that the structure will last at least

50 hours is . 779. The graph of R(t) for the Weibull distribu-

tions with some fixed parameters is given in Figure 9.

The above mentioned decision procedure when the system is non-replaceable,

does not account for the average reliability or cost which in general are

functions of time. Thus, it seems that a more sophisticated technique is

necessary depending on the situation. The following two procedures are

proposed examples.
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R(t)

1. 0 [ =4

.6

Time

.4 .8 l.Z 1.6

Figure 9, R(t) e (y= 0 and a = 1)

(a) To guard against the worst case select the system j associated with 0.J

which will maximize

mrin 4( c(t)} R(tjO ) (70)

t

where c [c(t)1 is a function of the cost at time t. R(tj10.) is a reliability of

a system with the parameter 0.. This decision procedure is an extremelyJ

conservative one. One simply selects the system which is the best in the

worst case. (See Figure 10)

(b) Suppose one is interested in over-all performance during the time of

operation to. In this case a better decision is to select the system j

associated with 0. which will maximize
J

t

f CP (c(t)J R(t1O.) dt (71)

53



That is, a system which is the best in average during the time of operation

should be selected. In Figure 10, one clearly prefers system 3 over systems

1 and 2 by the above method (a) which only considers the point t in this case,

but if one is interested in over-all operation time, system 1 is most preferable.

0 t

00
0 to

Figure 10. cP Lc(t)1 R(tre.)

Example.

Assume 4 )c(t)>= 1 for j =1 or 2. Suppose that to = 2, y 0, a = 1. If

there is a choice of two systems with P = 1 and P = 2, then since e-2 < e-1

the decision by Eq. (70) will choose a system with P 1 to guard against

the worst case. While the relation

et dt et dt
0 04

indicates that a system with 13 2 is better if one is interested in average

reliability during the time period of operation.
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10.6 SAMPLE SIZE

Methods of determining sample sizes needed for estimating various

quantities are proposed here.

(a) Suppose a confidence interval about ap is desired whose length is L.

The parameters 13 and y are assumed to be known, (see Section

10.6 (c) below). The sample size n is determined such that n

satisfies the following two conditions:

AA
2np 2na< L

2 2

XZn(./Z) XZn(l -E/Z)

and
AAZna1 2na• =1

P 2n <p 2n 1

L xn( 1 -E / 2 X2n(e / 2) 1

(b) Now consider a confidence interval about 13 whose desired length is

< L. Assume that a and y are known. Equation (67) states:

[A A 1.66
P P 6)<P< 0l+ 6 )j 1 - n62 (72)

where 6 5 0 is a constant. If the confidence coefficient is po' then

1-66 r. 66
n6 = P0  or (1 -p 0 )n

Thus, ^6
____ (=1P.6n1" (1.-p 0 )n62
( n-pO)n

and A2Z
2.62P <2 <n

(5 -po5 L
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Since the inequality (72) has two unknowns n and P , n has to be deter-

mined iteratively. That is, n is increased until the inequality (72) is satis-

fied. This procedure is illustrated in the following example.

Example: Suppose that one wishes to estimate P by Eqs. (62) and (63)

within an accuracy of +.5 with confidence of 90%. One has to

determine n from inequality (62) iteratively. Suppose one

guesses n '--116, and obtains an estimate ý= 2 . Then

inequality (62) is not satisfied since

(2.62)(4)
(.1(1) = 104.8 •' 16(. 1)(1)

Now suppose a sample of size n = 100 is used, and an esti-
A

mate P = 1.95 is obtained. The inequality (62) is satisfied,

thus 100 is a sufficiently large sample size for the purpose.

(2.62)(1.95)2 = 99.6 < 100
(.1)(1)

(c) A confidence interval about P whose expected length is L when y

is known but a is unknown will now be derived. A similar approach

to (b) yields

1- P0 or = ( P0 )n

where p 0 is the confidence coefficient. The desired sample size n is

given by
4. 39 P2

2 -

(1 - 0) L

Again the above inequality has to be solved for n iteratively.
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(d) As a further example for sample size computations, it will be

assumed that P = 2 . This would seem to correspond to a reason-

able idea of the shape of a density function for time to fatigue failure.

Choosing a specific reasonable value for the parameter P and further

assuming that y is known simplifies many of the parameter estima-

tion problems. It has been noted that for P = 2, the Weibull distribution
2

becomes a X distribution with two degrees-of-freedom if the scale

parameter is chosen as a =-F?. and the location parameter y = 0.

This is also the Rayleigh distribution. The equation for the density

function in this case is
2

-x /Z
W(x) = xe (73)

It can be shown (Reference 10) that the mean value of a random

variable x having the distribution W(x) is (when j = 2)

E(x) = y+ a -F (74)

and the variance is

Var (x) = a2 [r(?) - r?(. a2 [= -2[T-(75)

where r(n) is the Gamma function.

To obtain an estimate of the sample size needed to estimate the mean

of the distribution (the mean time to fatigue failure) one examines estimates

of E(x) of Eq. (74). If y is assumed to be known, then the maximum likeli-
2

hood estimate of a is

N

AZ zi= (76)
a - N
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where x. = T. -Y and T is the time to failure of the ith test item. The
1 i

total number of test items is denoted by N. From Section 10.3 the quantity

2N

Therefore, the expected value and variance of a are

E() = '-N E[X2 (2N)] = a (78)

and

4 422

A2 a 4 2 2N 4 = a (79)Var (a) = 42 Var X (2N)J _ 4N = N (79)

The normalized standard error c is then determined by

AZ 4

2 Var(a2) _ a _1 1
E2 A2) N 4 N
E~a

or
1 (81)

2

These formulas could be employed to estimate a directly. However,

since the unsquared quantity a appears in Eq. (74), this is the quantity of

interest.

For large N, if a variable x has a X 2(2N) distribution, then

-\-x is approximately normal with mean -2N - 1 and variance of unity.

See page 371, Reference 14. The unit variance in this transformation is

an approximation but only terms of the form 1/4N are neglected. Hence,
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for even moderate values of N the approximation is good. Using these

facts one calculates for the mean value:

'2E 2 -- E x2(2N 2 "T Z 1 (82)

and the variance:

"Var ) T a 2 ar 2X2(2N)

The normalized standard error E is then obtained from

Var 2 7 4-
2 N1

2 2N- (
E2• ~4v 4N a(Nl

Finally, the normalized standard error of the unknown portion of the

mean time to fatigue failure is given by

1= (85)
V2 N - I

One may now use Eq. (85) for experiment planning purposes. Large sample

sizes should be expected to properly employ Eq. (85), but for the lack of

better available techniques, one may use it as a reasonable guideline for

relatively small samples also.

For example, assume it is desired to estimate the unknown portion

(- #) of mean time to fatigue failure (with y assumed known) where a

normalized standard error of 20% is allowed. Then
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.2

and

N -- I + 1 13

As one can see from this example, obtaining fairly good estimates of

fatigue life will require extensive panel and other structural testing. To

work the formula the other way, assume N = 20 panels are tested to failure.

Then the normalized standard error is

1 1
Ei - -. 16

In these estimates, the minimum time to failure, y, has been assumed

known. Inclusion of this figure will reduce percentage errors. This reduc-

tion will be significant if y is large compared to a.

The main reason for the assumptions of known P and known y are

that considerably more complication enters the estimation procedures

when all three parameters are to be estimated from the data. The above

discussed procedures provide suitable guidelines for fatigue experiment

planning. After a fair amount of data is collected, revised estimates can

be obtained for the parameters and more accurate procedures can be used

for subsequent experimental program design.

60



10.7 EXAMPLE OF FATIGUE TEST

The following data are obtained from an actual sonic fatigue test

result of a certain panel.

Time to Failure r
in 100 sec (T.i log (T. - Y) (log (Ti - Y)

35 2.71 7.34
37 2.83 8.01

38 2.89 8.35
33 2.56 6.55

39 2.94 8.64
37 2.83 8.01

30 2.30 5.29

29 2.20 4.84

30 2.30 5.29

27 1.95 3.80
39 2.94 8.64

49 3. 37 11.36

39 2.94 8.64

23 1.10 1. 21

24 1.39 1. 93

34 2.64 6.97

26 1.79 3.20

28 2.08 4.33

29 2.20 4.84

30 2.30 5.29

Total 656 48.26 122.53

Table 2. Summary of Test Data

Assume that it is guaranteed or known from long experience that the

panel never fails before 2000 sec. Thus, let -y = 20 and let x. = T. - y1

for each i. Then

2 2
(z log xi) = 2329.03 E logx. = 122.53

Using Eq. (64),Tr2(9
(19) = 2.27

6 122.53 - 16.4
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The estimated P value of 2. 27 indicates that although the fatigue failure

distribution is almost symmetrical (see Figure 11), the distribution has

slight positive skew. A plot of the test data also confirms the positive skew

and a normal distribution may be a poor model in this example as in many

fatigue test analyses. Also, it indicates that the failure rate is a sharply

increasing function of time (see Figure 8). Now assuming that ý is the

true value a can be estimated by Eq. (59). A simple approximation can be

obtained by Eq. (53) as follows.

time!0 20 30 46

Figure 11. Distribution of Failure Time

In the above example

A - ZT.S= T =- 2  = 32.8 = 20 + (.394). c
20

A 12.8
a s- 14.41

.888
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Thus, desired density function as a mathematical model is estimated by

1.2 t-2 o 1 z 2. 7

A (t - 20)1"27 [ .
2.27 2.27e for t 5 20

14.412.7

= 0 for t < 20

The reliability function is estimated by

S[t-20 
] 2.27

A 144
R(t) = e for t 5 20

=0 for t < 20

In the following reliability functions based on the Weibull and normal distri-

butions are denoted R(t) and R N(t) respectively, and the actual percent of

sample panels which have not failed at time t is denoted R (t). By the
s

definition of reliability,

RN(t) 1 e4(1i2 d
R NM 4 e dt

t
2

00 x
I-'2

= e dx (86)

where ýL is the mean and aY is the standard deviation of the normal

distribution.

In the above example, T = 32. 8 and s = 6. 38. Thus, R N(t) is

estimated by
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2
0o x

Ar1 2

•N(t) f 1 e dx

(t-32.8)/6.38

The actual percent of samples that did not fail at time t is

number of failure before t
s sample size

The following table compares three estimates.

A At R (t) R N(t) R s(t)

20 1.00 .98 1.00
25 .91 .89 90
27 .82 .82 .85
30 .65 .67 .65
33 .45 .49 .50
35 .34 .36 .40
38 . 19 .21 .25
40 .12 .13 .05
45 .03 .03 .05

Table 3. Estimates of Reliabilities

For example, the probability that the panel survives 3000 seconds is . 65.

In actual sample of 20 tests, 65% of the panels survived 3000 seconds.

In order to describe the failure probability of the panel, the survival

curve which is a graph of R(t) is given in Figure 12.
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R(t)

.5

Time
0 10 20 30 40

Figure 1Z. Survival Curve
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11. RECOMMENDATIONS

The properties of the Weibull distribution have been discussed.

Indications are that the Weibull distribution is suitable as a mathematical

model of life length when the three parameters are properly estimated.

The best procedure may be to estimate the parameters from the simul-

taneous equations given in Section 10.4. However, the analytical approach

does not yield explicit solutions. Thus, development of a computer program

is recommended to provide iterative solutions.

More research is recommended to improve the method of estimation

of the Weibull parameters. The properties of estimators such as consistency,

efficiency, and asymptotic distribution should be investigated.

Some decision procedures for distinguishing between two sets of life

data in terms of reliability have been presented. This is another area which

needs further study for more useful applications. The applications of the

minimax, Bayes, and other decision procedures may be explor-ed.

Additional studies in some areas of sample size reduction would be

fruitful. Clearly, it is laborious to reduce very large sample size by the

technique described in Section 3. One has to compute a sequence of means

and ranges in the process of eliminating outliers. Then one needs a random

number table. The technique is recursive in nature and as a result it is

extremely suitable to adopt a computer solution. The above method can be

easily and compactly programmed for a computer solution. It is recommended

that basic methods of sampling be studied further. Such criteria as relative

efficiency, net relative efficiency, costs, bias, and practicality should be

evaluated for useful applications.
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means and variances of normally (Gaussian) distributed random variables are
described. Procedures for reducing a relatively large sample to a smaller sample
are presented. Elimination of outliers and systematic reseampling are two methods
given.

An explanation is presented of the 6equirements and problems involved in the
determination of record lengths necessary for an estimate of a given accuracy
for autocorrelation functions, ordi nary power spectral density functions, cross-
correlation functions, cross-spectral density functions, frequency response
functions, and probability density functions.

Due to its importance in random fatigue testing applications, the basic proper-
ties of the Weibull distribution in terms of its parameters and the failure rate
are summarized. A presentation is given of estimation and statistical testing
problems related to the Weibull distribution. The best available methods of
estimating the parameters are described. Methods of determining sample sizes
needed for various analyses are developed. Some problems of reliability analysis
applicable in fatigue testing are discussed. New methods of decision techniques
for comparing two or more systems are proposed in terms of reliability. The re-
port concludes with an example of the application of the Weibull distribution to
actual fatigue test data.
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